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PART ONE

Temporally Precise Coding in the
Rodent Whisker System
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Active whisker sensation
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Coding of surface properties during active whisker sensation

Whisker Neural response
kinetics i S1 cortex
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Coding of surface properties during active whisker sensation
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Coding of surface properties during active whisker sensation
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Whisker slips are temporally discrete features of active whisker input

Whisker moving across rough sandpaper
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SIips are a candidate cue for surface features
Smooth sandpaper Rough sandpaper
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S1 coding of slips and surfaces

Chronic tetrode recording n = 90 neurons, L4 and L5, 3 rats

Microdrive

Shamher Marking

|100 pv 25 ms

l PO y " " . : Lesion Ch1 M%MWWMMW
S o I ch3 M\&MM%W%WW*
Ch4 WWWWWWWMW%

Unit 1
® Unit 2
» Unit 3

8

Spike waveforms
Unit 1 Unit 2 Unit 3

’___UnilZ - o’
>
Ch1 Ch1 § K \“‘ e
0 2w m 0 m m -— \ |

1ms

2
=]

Amplitude (pV)
Amplitude (pV)

o

E1 E2 E3 E4 E1 E2 E3 E4

Autocorrelogram

. | 1”1W“m
4 60 20 40 80 i 0 0
0 30 80 0 30 30 0 30
0 ms

Time (min) Time (min) ms10

Ch2 Amplitude
Ch3 Amplitude




S1 spike trains in awake, behaving rats

Whisking Trials 5 seconds

Background spiking consists primarily of single spikes,
not bursts, at median 6 Hz.

Shantanu
Jadhav




Whisker slips drive sparse, temporally precise spikes
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Whisker slips drive sparse, temporally precise spikes
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Transient firing correlations robustly encode slips

ROC analysis shows that _

slips are accurately encoded (allgrgcr;erg(ra?ingells) sclam?tt.g(rj\
by synchronous firing (20 ms response

scale) in small neuronal to a fast slip
populations (100 neurons,
97% accuracy)
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the sparse population signal.
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Transient firing correlations robustly encode slips

Confirming this idea, Background Slip Response
Window Window

slips transiently increase = =

firing correlation for
neuron pairs in vivo. 2. | Neuron2

. Synchronous
- Spikes

| Neuron1

L L
-

% of Slips with
Synchrony in Neuron Pairs

20

Slip Event Number

&
&

After Slip
S

® =0.32 mm/ms’
Mean Ratio = 2.34*

10 15 20
Before Slip

)

(=)




Utility of a synchrony code for slips: coding of surface properties

Slip-driven firing synchrony provides
= Observed Synchrony Rate

a useful code for surface roughness Sanbsp ot
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Utility of a synchrony code for slips: coding of surface properties

Slip-driven firing synchrony provides
= Observed Synchrony Rate

a useful code for surface roughness Sanbsp ot

= Firing Rate - Neuron 1

= Firing Rate - Neuron 2
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Summary: Time in Tactile Whisker Sensation

Summary
Friction transforms continuous surface whisking into a series of discrete slip-
stick events, which are fundamental encoded elements of tactile sensation.

Slips are represented by sparse, low-probability, precisely timed spikes.
Temporal precision allows efficient decoding of sparse activity by synchronous

firing of S1 neurons. This strategy has benefits for representing dense
temporal input streams.
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Summary: Time in Tactile Whisker Sensation

Summary
Friction transforms continuous surface whisking into a series of discrete slip-
stick events, which are fundamental encoded elements of tactile sensation.

Slips are represented by sparse, low-probability, precisely timed spikes.
Temporal precision allows efficient decoding of sparse activity by synchronous

firing of S1 neurons. This strategy has benefits for representing dense
temporal input streams.

Ongoing and future questions
Do specific sequences of whisker stimuli carry behavioral meaning?

Can tactile sequences be learned?

How are tactile sequences represented in the brain?




PART TWO

State dependence of sensory-evoked
responses in neocortex
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. Behavioral
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Activated and Inactivated Brain States in Cerebral Cortex

Activated state: High-frequency, low-amplitude LFP and EEG
Alert wakefulness and REM sleep

Inactivated state: Low-frequency, higher-amplitude rhythm
Inattentive wakefulness, slow-wave sleep

Inactive Active Inactive

FEG A A A o

Poulet & Petersen, Nature 2008 1s
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Accuracy of rapid sensory encoding depends on brain state

Record Al responses to click pairs in anesthetized rats.
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Response variability is especially evident during click sequences
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Response variability is especially evident during click sequences

1st click:
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Prediction of the stimulus from spiking is
more accurate in the activated state
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Reliability in response to ongoing noise stimuli
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Interim Summary

Internal External
Dynamics Control

Inattentive? Attentive?

Conclusions and Challenges:
Spike timing carries important information about low-level sensory features.
Local internal dynamics influence timing and reliability of spikes

Do S1 and Al have similar coding strategies? How does this influence
encoding and perception of patterns and sequences?
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1.1.1 Cross-modal comparison of learning simple sensory patterns
and sequences

SMN,

IMS Are there common time scales, neural representations, and
computational strategies for learning sequences across modalities?
(Feldman: rodent whiskers, Chiba: rodent vision, Harris: rodent hearing;
de Sa, Sereno: human cross-modal)

1 vs.2 discrimination Interval discrimination

Whisker
L A impulse




Slips contribute to modest firing rate ' Btk
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