Precise Spike Timing and Reliability in Neural Encoding of Low-Level Sensory Stimuli and Sequences

Project 1.1.2

Feldman and Harris Labs

PART ONE

Temporally Precise Coding in the Rodent Whisker System

Dan Feldman, Jason Wolfe, Shantanu Jadhav Toshio Miyashita, Sharri Zamore, Joe Goldbeck

SMN Network

Dept. of Molecular & Cell Biology Helen Wills Neuroscience Institute UC Berkeley

Active whisker sensation

Whisker shaft

Berg et al., 2003

slowed ~10x

Active whisker sensation

Takeshi Morita

Coding of surface properties during active whisker sensation

series of transient elements

5

Representation of each element

by temporally precise, correlated firing

Coding of surface properties during active whisker sensation

Record S1 spikes

Jason Wolfe Shantanu Jadhav

Coding of surface properties during active whisker sensation

Whisker slips are temporally discrete features of active whisker input

Slips are a candidate cue for surface features

S1 coding of slips and surfaces

Chronic tetrode recording

n = 90 neurons, L4 and L5, 3 rats

S1 spike trains in awake, behaving rats

Background spiking consists primarily of single spikes, not bursts, at median 6 Hz.

Whisker slips drive sparse, temporally precise spikes

Whisker slips drive sparse, temporally precise spikes

Slip responses are usually 1-2 spikes. Net P(spike) over background = 0.11

Transient firing correlations robustly encode slips

ROC analysis shows that slips are accurately encoded by synchronous firing (20 ms scale) in small neuronal populations (100 neurons, 97% accuracy)

Thus, precise timing of responses enables decoding of the sparse population signal.

This constitutes a transient synchrony code for slips.

Transient firing correlations robustly encode slips

Confirming this idea, slips transiently increase firing correlation for neuron pairs in vivo.

Utility of a synchrony code for slips: coding of surface properties

Slip-driven firing synchrony provides a useful code for surface roughness

Air

no
large
slips

Utility of a synchrony code for slips: coding of surface properties

Slip-driven firing synchrony provides a useful code for surface roughness

Firing correlations Firing correlations (20 ms window) (100 ms window)

Four similar sandpapers (P150, 400, 800, 1200)

Summary: Time in Tactile Whisker Sensation

Summary

Friction transforms continuous surface whisking into a series of discrete slipstick events, which are fundamental encoded elements of tactile sensation.

Slips are represented by sparse, low-probability, precisely timed spikes.

Temporal precision allows efficient decoding of sparse activity by synchronous firing of S1 neurons. This strategy has benefits for representing dense temporal input streams.

Summary: Time in Tactile Whisker Sensation

Summary

Friction transforms continuous surface whisking into a series of discrete slipstick events, which are fundamental encoded elements of tactile sensation.

Slips are represented by sparse, low-probability, precisely timed spikes.

Temporal precision allows efficient decoding of sparse activity by synchronous firing of S1 neurons. This strategy has benefits for representing dense temporal input streams.

Ongoing and future questions

Do specific sequences of whisker stimuli carry behavioral meaning?

Can tactile sequences be learned?

How are tactile sequences represented in the brain?

PART TWO

State dependence of sensory-evoked responses in neocortex

Activated and Inactivated Brain States in Cerebral Cortex

Activated state: High-frequency, low-amplitude LFP and EEG Alert wakefulness and REM sleep

Inactivated state: Low-frequency, higher-amplitude rhythm Inattentive wakefulness, slow-wave sleep

Accuracy of rapid sensory encoding depends on brain state

Record A1 responses to click pairs in anesthetized rats.

inactivated

activated

inactivated

activated

Response variability is especially evident during click sequences

1st click: variable response

2nd click: (50 ms later) very variable

Response variability is especially evident during click sequences

1st click: variable response

2nd click: (50 ms later) very variable

Prediction of the stimulus from spiking is more accurate in the activated state

Reliability in response to ongoing noise stimuli

Interim Summary

Internal Dynamics

External Control

Conclusions and Challenges:

Spike timing carries important information about low-level sensory features.

Local internal dynamics influence timing and reliability of spikes

Do S1 and A1 have similar coding strategies? How does this influence encoding and perception of patterns and sequences?

Progress

1.1.1 Cross-modal comparison of learning simple sensory patterns and sequences

SMN, IMS

Are there common time scales, neural representations, and computational strategies for learning sequences across modalities? (Feldman: rodent whiskers, Chiba: rodent vision, Harris: rodent hearing; de Sa, Sereno: human cross-modal)

Train rats to distinguish temporal patterns of whisker impulses.

Slips contribute to modest firing rate elevation on surfaces

Mean 2.2-fold increase in firing rate on surfaces

People

Lab Members
Shantanu Jadhav
David House
Renna Stevens
Joe Goldbeck
Sharri Zamore

Lu Li Toshio Miyashita Ray Shao

Jason Wolfe

<u>Collaborators</u>
Beat Lutz (Munich)
Daniel Shulz (CNRS)
Ken Mackie (UW)

David Kleinfeld (UCSD)

Support

NINDS
NSF CAREER Award
NSF Temporal Dynamics
of Learning Center

