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Surface� Whisker 
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Physical Transformation 
Neural Transformation 

Coding of surface properties during active whisker sensation 
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Coding of surface properties during active whisker sensation 
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Whisker slips are temporally discrete features of active whisker input 

Wolfe et al., PLoS Biology 2008 8 



Slips 

* 
* * * 
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Slips are a candidate cue for surface features 

0.5 mm/
ms2 

Wolfe et al., 
PLoS Biology 2008 9 



S1 coding of slips and surfaces 

Chronic tetrode recording n = 90 neurons, L4 and L5, 3 rats 
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S1 spike trains in awake, behaving rats 

Shantanu 
Jadhav 11 

Background spiking consists primarily of single spikes, 
not bursts, at median 6 Hz. 



Whisker slips drive sparse, temporally precise spikes 

14 ms jitter 
(temporal precision) 

12 



Slip responses are usually 1-2 spikes. 

Net P(spike) over background = 0.11 

Whisker slips drive sparse, temporally precise spikes 



20 ms 

ROC analysis shows that 
slips are accurately encoded 
by synchronous firing (20 ms 
scale) in small neuronal 
populations (100 neurons,  
97% accuracy) 

Thus, precise timing of 
responses enables decoding of 
the sparse population signal. 

This constitutes a transient 
synchrony code for slips. 

Transient firing correlations robustly encode slips 



Confirming this idea, 
slips transiently increase 
firing correlation for 
neuron pairs in vivo. 
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Transient firing correlations robustly encode slips 



Utility of a synchrony code for slips: coding of surface properties 

Slip-driven firing synchrony provides 
a useful code for surface roughness 
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Utility of a synchrony code for slips: coding of surface properties 

Slip-driven firing synchrony provides 
a useful code for surface roughness 
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Summary:  Time in Tactile Whisker Sensation 

Summary 
Friction transforms continuous surface whisking into a series of discrete slip-
stick events, which are fundamental encoded elements of tactile sensation. 

Slips are represented by sparse, low-probability, precisely timed spikes. 

Temporal precision allows efficient decoding of sparse activity by synchronous 
firing of S1 neurons.  This strategy has benefits for representing dense 
temporal input streams. 

Slip-stick model 

slip 

stick whisker 

Slips encode 
surface properties 
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Summary:  Time in Tactile Whisker Sensation 

Summary 
Friction transforms continuous surface whisking into a series of discrete slip-
stick events, which are fundamental encoded elements of tactile sensation. 

Slips are represented by sparse, low-probability, precisely timed spikes. 

Temporal precision allows efficient decoding of sparse activity by synchronous 
firing of S1 neurons.  This strategy has benefits for representing dense 
temporal input streams. 

Ongoing and future questions 
Do specific sequences of whisker stimuli carry behavioral meaning?   

Can tactile sequences be learned? 

How are tactile sequences represented in the brain? 
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PART TWO 

State dependence of sensory-evoked

responses in neocortex
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Activated and Inactivated Brain States in Cerebral Cortex 

Activated state:  High-frequency, low-amplitude LFP and EEG 
     Alert wakefulness and REM sleep  

Inactivated state:  Low-frequency, higher-amplitude rhythm 
     Inattentive wakefulness, slow-wave sleep 
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Accuracy of rapid sensory encoding depends on brain state 

Record A1 responses to click pairs in anesthetized rats. 

inactivated 

activated 

inactivated 

activated 
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Response variability is especially evident during click sequences 

1st click: 
variable 
response 

2nd click: 
(50 ms later) 
very variable 



Temporal Dynamics of Learning Initiative 1 

1st click: 
variable 
response 

2nd click: 
(50 ms later) 
very variable 

Response variability is especially evident during click sequences 
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Prediction of the stimulus from spiking is 
more accurate in the activated state 
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Inactivated state    
High trial-to-trial variability 

Activated state 
Low trial-to-trial variability 

Sharper time-locking 

Stimulus-LFP coherence 

Reliability in response to ongoing noise stimuli 

Amplitude-modulated 
noise stimulus 
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Interim Summary 

External

Control


Inactivated
 Activated


Internal

Dynamics


Attentive?
Inattentive?

Conclusions and Challenges: 

Spike timing carries important information about low-level sensory features. 

Local internal dynamics influence timing and reliability of spikes 

Do S1 and A1 have similar coding strategies?  How does this influence 
encoding and perception of patterns and sequences? 





Train rats to distinguish temporal  patterns of whisker impulses. 

1 vs.2 discrimina.on  Interval discrimina.on 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Progress 

SMN, 
IMS 

1.1.1  Cross-modal comparison of learning simple sensory patterns  
           and sequences 

Are there common time scales, neural representations, and  
computational strategies for learning sequences across modalities?  
(Feldman: rodent whiskers, Chiba: rodent vision, Harris: rodent hearing; 
de Sa, Sereno: human cross-modal) 

Time 



Slips contribute to modest firing rate 
elevation on surfaces 

Mean 2.2-fold 
increase in  
firing rate on  
surfaces 
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